
The Rust Way of OS Development
Philipp Oppermann

May 30, 2018 HTWG Konstanz



About Me
Computer science student at KIT (Karlsruhe)
“Writing an OS in Rust” blog series (os.phil-opp.com)
Embedded Rust development

Contact:

phil-opp on GitHub
Email: hello@phil-opp.com

1

https://os.phil-opp.com/


Rust
3 year old programming language
Memory safety without garbage collection
Used by Mozilla, Dropbox, Cloud�are, …

enum Event {

    Load,

    KeyPress(char),

    Click { x: i64, y: i64 }

}

fn print_event(event: Event) {

    match event {

        Event::Load => println!("Loaded"),

        Event::KeyPress(c) => println!("Key {} pressed", c),

        Event::Click {x, y} => println!("Clicked at x={}, y={}", x, y),

    }

}
2



OS Development
“Bare metal” environment

No underlying operating system
No processes, threads, �les, heap, …

Goals

Abstractions
For hardware devices (drivers, �les, …)
For concurrency (threads, synchronization primitives, …)

Isolation (processes, address spaces, …)
Security

3



OS Development in Rust
Writing an OS in Rust: Tutorials for basic functionality

Booting, testing, CPU exceptions, page tables
No C dependencies
Works on Linux, Windows, macOS

4



OS Development in Rust
Writing an OS in Rust: Tutorials for basic functionality
Redox OS: Most complete Rust OS, microkernel design

5



OS Development in Rust
Writing an OS in Rust: Tutorials for basic functionality
Redox OS: Most complete Rust OS, microkernel design
Tock: Operating system for embedded systems

6



OS Development in Rust
Writing an OS in Rust: Tutorials for basic functionality
Redox OS: Most complete Rust OS, microkernel design
Tock: Operating system for embedded systems
Nebulet: Experimental WebAssembly kernel

WebAssembly is a binary format for executable code in web pages
Idea: Run wasm applications instead of native binaries
Wasm is sandboxed, so it can safely run in kernel address space
A bit slower than native code
But no expensive context switches or syscalls

7



OS Development in Rust
Writing an OS in Rust: Tutorials for basic functionality
Redox OS: Most complete Rust OS, microkernel design
Tock: Operating system for embedded systems
Nebulet: Experimental WebAssembly kernel

What does using Rust mean for OS development?

8



Memory Safety

Rust means…

9



Memory Safety
No invalid memory accesses

No bu�er over�ows
No dangling pointers
No data races

Guaranteed by Rust's ownership system
At compile time

10



Memory Safety
No invalid memory accesses

No bu�er over�ows
No dangling pointers
No data races

Guaranteed by Rust's ownership system
At compile time

In C:

Array capacity is not checked on access
Easy to get bu�er over�ows

Every malloc needs exactly one free
Easy to get use-after-free or double-free bugs

Vulnerabilities caused by memory unsafety are still common

10



Memory Safety

Source: https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
11

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33


Memory Safety

Source: https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
12

https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html


Memory Safety: A Strict Compiler
It can take some time until your program compiles
Lifetimes can be complicated

“error: x does not live long enough”

However:

“If it compiles, it usually works”
Far less debugging

No data races!
Refactoring is safe and painless

13



Encapsulating Unsafety

Rust means…

14



Encapsulating Unsafety
Not everything can be veri�ed at compile time
Sometimes you need unsafe in a kernel

Writing to the VGA text bu�er at 0xb8000
Modifying CPU con�guration registers
Switching the address space (reloading CR3)

15



Encapsulating Unsafety
Not everything can be veri�ed at compile time
Sometimes you need unsafe in a kernel

Writing to the VGA text bu�er at 0xb8000
Modifying CPU con�guration registers
Switching the address space (reloading CR3)

Rust has unsafe blocks that allow to
Dereference raw pointers
Call unsafe functions
Access mutable statics
Implement unsafe traits

Goal: Provide safe abstractions that encapsulate unsafety
Like hardware abstractions in an OS

15



Encapsulating Unsafety: Example
/// Read current page table

pub fn read_cr3() -> PhysFrame { … }

/// Load a new page table

pub unsafe fn write_cr3(frame: PhysFrame) { … }

/// Invalidate the TLB completely by reloading the CR3 register.

pub fn flush_tlb() { // safe interface

    let frame = read_cr3();

    unsafe { write_cr3(frame) }

}

The CR3 register holds the root page table address
Reading is safe
Writing is unsafe (because it changes the address mapping)

The flush_tlb function provides a safe interface
It can't be used in an unsafe way

16



A Powerful Type System

Rust means…

17



A Powerful Type System: Mutexes

C++ Rust

std::vector data = {1, 2, 3};

// mutex is unrelated to data

std::mutex mutex;

// unsynchronized access possible

data.push_back(4);

mutex.lock();

data.push_back(5);

mutex.unlock();

let data = vec![1, 2, 3];

// mutex owns data

let mutex = Mutex::new(data);

// compilation error: data was moved

data.push(4);

let mut d = mutex.lock().unwrap();

d.push(5);

// released at end of scope

⇒ Rust ensures that Mutex is locked before accessing data

18



A Powerful Type System: Page Table Methods
Add a page table mapping:

fn map_to<S: PageSize>(

    &mut PageTable,

    page: Page<S>,              // map this page

    frame: PhysFrame<S>,        // to this frame

    flags: PageTableFlags,

) {…}

impl PageSize for Size4KB {…} // standard page

impl PageSize for Size2MB {…} // “huge” 2MB page

impl PageSize for Size1GB {…} // “giant” 1GB page (only on some architectures)

19



A Powerful Type System: Page Table Methods
Add a page table mapping:

fn map_to<S: PageSize>(

    &mut PageTable,

    page: Page<S>,              // map this page

    frame: PhysFrame<S>,        // to this frame

    flags: PageTableFlags,

) {…}

impl PageSize for Size4KB {…} // standard page

impl PageSize for Size2MB {…} // “huge” 2MB page

impl PageSize for Size1GB {…} // “giant” 1GB page (only on some architectures)

Generic over the page size
4KB, 2MB or 1GB

Page and frame must have the same size

19



A Powerful Type System
Allows to:

Make misuse impossible
Impossible to access data behind a Mutex without locking

Represent contracts in code instead of documentation
Page size of page and frame parameters must match in map_to

Everything happens at compile time ⇒ No run-time cost!

20



Easy Dependency Management

Rust means…

21



Easy Dependency Management
Over 15000 crates on crates.io
Simply specify the desired version

Add single line to Cargo.toml
Cargo takes care of the rest

Downloading, building, linking

22



Easy Dependency Management
Over 15000 crates on crates.io
Simply specify the desired version

Add single line to Cargo.toml
Cargo takes care of the rest

Downloading, building, linking

It works the same for OS kernels
Crates need to be no_std
Useful crates: bitflags, spin, arrayvec, x86_64, …

22



Easy Dependency Management
bit�ags: A macro for generating structures with single-bit �ags

#[macro_use] extern crate bitflags;

bitflags! {

    pub struct PageTableFlags: u64 {

        const PRESENT =         1 << 0;    // bit 0

        const WRITABLE =        1 << 1;    // bit 1

        const HUGE_PAGE =       1 << 7;    // bit 7

        …

    }

}

fn main() {

    let stack_flags = PageTableFlags::PRESENT | PageTableFlags::WRITABLE;

    assert_eq!(stack_flags.bits(), 0b11);

}

23



Easy Dependency Management
bit�ags: A macro for generating structures with single-bit �ags
spin: Spinning synchronization primitives such as spinlocks

24



Easy Dependency Management
bit�ags: A macro for generating structures with single-bit �ags
spin: Spinning synchronization primitives such as spinlocks
arrayvec: Stack-based vectors backed by a �xed sized array

use arrayvec::ArrayVec;

let mut vec = ArrayVec::<[i32; 16]>::new();

vec.push(1);

vec.push(2);

assert_eq!(vec.len(), 2);

assert_eq!(vec.as_slice(), &[1, 2]);

24



Easy Dependency Management
bit�ags: A macro for generating structures with single-bit �ags
spin: Spinning synchronization primitives such as spinlocks
arrayvec: Stack-based vectors backed by a �xed sized array
x86_64: Structures, registers, and instructions speci�c to x86_64

Control registers
I/O ports
Page Tables
Interrupt Descriptor Tables
…

25



Easy Dependency Management
bit�ags: A macro for generating structures with single-bit �ags
spin: Spinning synchronization primitives such as spinlocks
arrayvec: Stack-based vectors backed by a �xed sized array
x86_64: Structures, registers, and instructions speci�c to x86_64

Over 350 crates in the no_std category
Many more can be trivially made no_std

26



Great Tooling

Rust means…

27



Great Tooling
rustup: Use multiple Rust versions for di�erent directories
cargo: Automatically download, build, and link dependencies
rustfmt: Format Rust code according to style guidelines

28



Great Tooling
rustup: Use multiple Rust versions for di�erent directories
cargo: Automatically download, build, and link dependencies
rustfmt: Format Rust code according to style guidelines
Rust Playground: Run and share code snippets in your browser

28



Great Tooling
clippy: Additional warnings for dangerous or unidiomatic code

fn equal(x: f32, y: f32) -> bool {

    if x == y { true } else { false }

}

29



Great Tooling
clippy: Additional warnings for dangerous or unidiomatic code

fn equal(x: f32, y: f32) -> bool {

    if x == y { true } else { false }

}

error: strict comparison of f32 or f64

 --> src/main.rs:2:8

  |

2 | if x == y { true } else { false }

  |    ^^^^^^ help: consider comparing them within some error: (x - y).abs() < err

warning: this if-then-else expression returns a bool literal

 --> src/main.rs:2:5

  |

2 | if x == y { true } else { false }

  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ help: you can reduce it to: x == y

29



Great Tooling
proptest: A property testing framework

fn parse_date(s: &str) -> Option<(u32, u32, u32)> {

    // […] check if valid YYYY-MM-DD format

    let year = &s[0..4];

    let month = &s[6..7]; // BUG: should be 5..7

    let day = &s[8..10];

    convert_to_u32(year, month, date)

}

proptest! {

    #[test]

    fn parse_date(y in 0u32..10000, m in 1u32..13, d in 1u32..32) {

        let date_str = format!("{:04}-{:02}-{:02}", y, m, d);

        let (y2, m2, d2) = parse_date(&date_str).unwrap();

        prop_assert_eq!((y, m, d), (y2, m2, d2));

    }

}
30



- try random values                     y = 2497, m = 8, d = 27     passes
    |                                   y = 9641, m = 8, d = 18     passes
    | (failed test case found)          y = 7360, m = 12, d = 20    fails

- reduce y to find simpler case         y = 3680, m = 12, d = 20    fails
    |                                   y = 1840, m = 12, d = 20    fails
    |                                   y = 920, m = 12, d = 20     fails
    |                                   y = 460, m = 12, d = 20     fails
    |                                   y = 230, m = 12, d = 20     fails
    |                                   y = 115, m = 12, d = 20     fails
    |                                   y = 57, m = 12, d = 20      fails
    |                                   y = 28, m = 12, d = 20      fails
    |                                   y = 14, m = 12, d = 20      fails
    |                                   y = 7, m = 12, d = 20       fails
    |                                   y = 3, m = 12, d = 20       fails
    |                                   y = 1, m = 12, d = 20       fails
    | (simplest y case still fails)     y = 0, m = 12, d = 20       fails

- reduce m to find simpler case         y = 0, m = 6, d = 20        passes
    |                                   y = 0, m = 9, d = 20        passes
    |                                   y = 0, m = 11, d = 20       fails
    | (minimum failure value found)     y = 0, m = 10, d = 20       fails

- reduce d to find simpler case         y = 0, m = 10, d = 10       fails
    |                                   y = 0, m = 10, d = 5        fails
    |                                   y = 0, m = 10, d = 3        fails
    |                                   y = 0, m = 10, d = 2        fails
    | (reduced test case found)         y = 0, m = 10, d = 1        fails

See https://github.com/altsysrq/proptest 31

https://github.com/altsysrq/proptest


Great Tooling for OS Development
In C:

First step is to build a cross compiler
A gcc that compiles for a bare-metal target system
Lots of build dependencies

On Windows, you have to use cygwin
Required for using the GNU build tools (e.g. make)
The Windows Subsystem for Linux might also work

In Rust:

Rust works natively on Linux, Windows, and macOS
The Rust compiler rustc is already a cross-compiler
For linking, we can use the cross-platform lld linker

By the LLVM project

32



Great Tooling for OS Development
bootimage: Create a bootable disk image from a Rust kernel

Cross-platform, no C dependencies
Automatically downloads and compiles a bootloader
bootloader: A x86 bootloader written in Rust and inline assembly

Goals:

Make building your kernel as easy as possible
Let beginners dive immediately into OS programming

No hours-long toolchain setup
Remove platform-speci�c di�erences

You shouldn't need Linux to do OS development

See https://os.phil-opp.com/news/2018-03-09-pure-rust/
33

https://os.phil-opp.com/news/2018-03-09-pure-rust/


Great Tooling for OS Development
In development: bootimage test

Basic integration test framework
Runs each test executable in an isolated QEMU instance

Tests are completely independent
Results are reported through the serial port

Allows testing in target environment

Testing on real hardware?

34



An Awesome Community

Rust means…

35



An Awesome Community
Code of Conduct from the beginning

“We are committed to providing a friendly, safe and welcoming
environment for all […]”
“We will exclude you from interaction if you insult, demean or
harass anyone”
Followed on GitHub, IRC, the Rust subreddit, etc.

36



An Awesome Community
Code of Conduct from the beginning

“We are committed to providing a friendly, safe and welcoming
environment for all […]”
“We will exclude you from interaction if you insult, demean or
harass anyone”
Followed on GitHub, IRC, the Rust subreddit, etc.

It works!
No inappropriate comments for “Writing an OS in Rust” so far
Focused technical discussions

36



An Awesome Community
Code of Conduct from the beginning

“We are committed to providing a friendly, safe and welcoming
environment for all […]”
“We will exclude you from interaction if you insult, demean or
harass anyone”
Followed on GitHub, IRC, the Rust subreddit, etc.

It works!
No inappropriate comments for “Writing an OS in Rust” so far
Focused technical discussions

vs:

“So this patch is utter and absolute garbage, and should be
shot in the head and buried very very deep.” Linus Torvalds on 14 Aug 2017

36

https://lkml.org/lkml/2017/8/14/698


No Elitism

Rust means…

37



No Elitism
Typical elitism in OS development:

“A decade of programming, including a few years of low-level
coding in assembly language and/or a systems language such
as C, is pretty much the minimum necessary to even
understand the topic well enough to work in it.”

From wiki.osdev.org/Beginner_Mistakes

Most Rust Projects:

It doesn't matter where you come from
C, C++, Java, Python, JavaScript, …

It's �ne to ask questions
People are happy to help

38

https://wiki.osdev.org/Beginner_Mistakes


No Elitism
IntermezzOS: “People who have not done low-level programming
before are a speci�c target of this book“

Writing an OS in Rust: Deliberately no particular target audience
People are able to decide themselves
Provide links for things not explained on the blog

E.g. for advanced Rust and OS concepts

39



Exciting New Features

Rust means…

40



Exciting New Features
Impl Trait: Return closures from functions
Non-Lexical Lifetimes: A more intelligent borrow checker
WebAssembly: Run Rust in browsers

41



Exciting New Features
Impl Trait: Return closures from functions
Non-Lexical Lifetimes: A more intelligent borrow checker
WebAssembly: Run Rust in browsers

In development: Futures and async / await

Simple and fast asynchronous code

How does it work?
What does it mean for OS development?

41



Futures
Result of an asynchronous computation:

trait Future {

    type Item;

    type Error;

    fn poll(&mut self, cx: &mut Context) -> Result<Async<Self::Item>,

                                                   Self::Error>;

}

enum Async<T> {

    Ready(T),

    NotReady,

}

Instead of blocking, Async::NotReady is returned

42



Futures: Implementation Details
Futures do nothing until polled
An Executor is used for polling multiple futures until completion

Like a scheduler
If future is not ready when polled, a Waker is created

Noti�es the Executor when the future becomes ready
Avoids continuous polling

Combinators

Transform a future without polling it (similar to iterators)
Examples

future.map(|v| v + 1): Applies a function to the result
future_a.join(future_b): Wait for both futures
future.and_then(|v| some_future(v)): Chain dependent futures

43



Async / Await
Traditional synchronous code:

fn get_user_from_database(user_id: u64) -> Result<User> {…}

fn handle_request(request: Request) -> Result<Response> {

    let user = get_user_from_database(request.user_id)?;

    generate_response(user)

}

Thread blocked until database read �nished
Complete thread stack unusable

Number of threads limits number of concurrent requests

44



Async / Await
Asynchronous variant:

 async fn get_user_from_database(user_id: u64) -> Result<User> {…}

 async fn handle_request(request: Request) -> Result<Response> {

    let future = get_user_from_database(request.user_id);

    let user = await!(future)?;

    generate_response(user)

}

Async functions return Future<Item=T> instead of T
No blocking occurs

Stack can be reused for handling other requests
Thousands of concurrent requests possible

How does await work?
45



Async / Await: Generators
Functions that can suspend themselves via yield:

fn main() {

    let mut generator = || {

        println!("2");

        yield;

        println!("4");

    };

    println!("1");

    unsafe { generator.resume() };

    println!("3");

    unsafe { generator.resume() };

    println!("5");

}

46



Async / Await: Generators
Functions that can suspend themselves via yield:

fn main() {

    let mut generator = || {

        println!("2");

        yield;

        println!("4");

    };

    println!("1");

    unsafe { generator.resume() };

    println!("3");

    unsafe { generator.resume() };

    println!("5");

}

Compiled as state machines
46



let mut generator = {

    enum Generator { Start, Yield1, Done, }

    impl Generator {

        unsafe fn resume(&mut self) {

            match self {

                Generator::Start => {

                    println!("2");

                    *self = Generator::Yield1;

                }

                Generator::Yield1 => {

                    println!("4");

                    *self = Generator::Done;

                }

                Generator::Done => panic!("generator resumed after completion")

            }

        }

    }

    Generator::Start

};

47



Async / Await: Generators
Generators can keep state:

fn main() {

    let mut generator = || {

        let number = 42;

        let ret = "foo";

        yield number; // yield can return values

        return ret

    };

    unsafe { generator.resume() };

    unsafe { generator.resume() };

}

Where are number and ret stored between resume calls?

48



let mut generator = {

    enum Generator {

        Start(i32, &'static str),

        Yield1(&'static str),

        Done,

    }

    impl Generator {

        unsafe fn resume(&mut self) -> GeneratorState<i32, &'static str> {

            match self {

                Generator::Start(i, s) => {

                    *self = Generator::Yield1(s); GeneratorState::Yielded(i)

                }

                Generator::Yield1(s) => {

                    *self = Generator::Done; GeneratorState::Complete(s)

                }

                Generator::Done => panic!("generator resumed after completion")

            }

        }

    }

    Generator::Start(42, "foo")

}; 49



Async / Await: Implementation
async fn handle_request(request: Request) -> Result<Response> {

    let future = get_user_from_database(request.user_id);

    let user = await!(future)?;

    generate_response(user)

}

Compiles roughly to:

async fn handle_request(request: Request) -> Result<Response> { GenFuture(|| {

    let future = get_user_from_database(request.user_id);

    let user = loop { match future.poll() {

        Ok(Async::Ready(u)) => break Ok(u),

        Err(e) => break Err(e),

        Ok(Async::NotReady) => yield,

    }}?;

    generate_response(user)

})}
50



Async / Await: Implementation
Transform Generator into Future:

struct GenFuture<T>(T);

impl<T: Generator> Future for GenFuture<T> {

    fn poll(&mut self, cx: &mut Context) -> Result<Async<T::Item>, T::Error> {

        match unsafe { self.0.resume() } {

            GeneratorStatus::Complete(Ok(result)) => Ok(Async::Ready(result)),

            GeneratorStatus::Complete(Err(e)) => Err(e),

            GeneratorStatus::Yielded => Ok(Async::NotReady),

        }

    }

}

51



Async / Await: For OS Development?
Everything happens at compile time

Can be used in OS kernels and on embedded devices
Makes asynchronous code simpler

Use Case: Cooperative multitasking

Yield when waiting for I/O
Executor then polls another future
Interrupt handler noti�es Waker
Only a single thread is needed

Devices with limited memory

52



Async / Await: An OS Without Blocking?
A blocking thread makes its whole stack unusable

Makes threads heavy-weight
Limits the number of threads in the system

What if blocking was not allowed?

53



Async / Await: An OS Without Blocking?
A blocking thread makes its whole stack unusable

Makes threads heavy-weight
Limits the number of threads in the system

What if blocking was not allowed?

Threads would return futures instead of blocking
Scheduler would schedule futures instead of threads
Stacks could be reused for di�erent threads

Only a few stacks are needed for many, many futures
Task-based instead of thread-based concurrency

Fine grained concurrency at the OS level

53



Summary
Rust means:

Memory Safety   no over�ows, no invalid pointers, no data races
Encapsulating Unsafety   creating safe interfaces
A Powerful Type System   make misuse impossible

Easy Dependency Management   cargo, crates.io
Great Tooling   clippy, proptest, bootimage

An Awesome Community    code of conduct
No Elitism    asking questions is �ne, no minimum requirements

Exciting New Features   futures, async / await

Slides are available at https://os.phil-opp.com/talks
54

https://os.phil-opp.com/talks


Summary
Rust means:

Memory Safety   no over�ows, no invalid pointers, no data races
Encapsulating Unsafety   creating safe interfaces
A Powerful Type System   make misuse impossible

Easy Dependency Management   cargo, crates.io
Great Tooling   clippy, proptest, bootimage

An Awesome Community    code of conduct
No Elitism    asking questions is �ne, no minimum requirements

Exciting New Features   futures, async / await

Slides are available at https://os.phil-opp.com/talks
54

https://os.phil-opp.com/talks


Extra Slides

55



Encapsulating Unsafety
Not possible in all cases:

/// Write a new root table address into the CR3 register.

pub fn write_cr3(page_table_frame: PhysFrame, flags: Cr3Flags) {

    let addr = page_table_frame.start_address();

    let value = addr.as_u64() | flags.bits();

    unsafe { asm!("mov $0, %cr3" :: "r" (value) : "memory"); }

}

56



Encapsulating Unsafety
Not possible in all cases:

/// Write a new root table address into the CR3 register.

pub fn write_cr3(page_table_frame: PhysFrame, flags: Cr3Flags) {

    let addr = page_table_frame.start_address();

    let value = addr.as_u64() | flags.bits();

    unsafe { asm!("mov $0, %cr3" :: "r" (value) : "memory"); }

}

Problem: Passing an invalid PhysFrame could break memory safety!

A frame that is no page table
A page table that maps all pages to the same frame
A page table that maps two random pages to the same frame

56



Encapsulating Unsafety
Not possible in all cases:

/// Write a new root table address into the CR3 register.

pub unsafe fn write_cr3(page_table_frame: PhysFrame, flags: Cr3Flags) {

    let addr = page_table_frame.start_address();

    let value = addr.as_u64() | flags.bits();

    asm!("mov $0, %cr3" :: "r" (value) : "memory");

}

Problem: Passing an invalid PhysFrame could break memory safety!

A frame that is no page table
A page table that maps all pages to the same frame
A page table that maps two random pages to the same frame

⇒ Function needs to be unsafe because it depends on valid input
56



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?

57



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?  unsafe

… disable CPU interrupts?

57



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?  unsafe

… disable CPU interrupts?  safe

… might cause CPU exceptions?

57



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?  unsafe

… disable CPU interrupts?  safe

… might cause CPU exceptions?  safe

… can be only called from privileged mode?

57



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?  unsafe

… disable CPU interrupts?  safe

… might cause CPU exceptions?  safe

… can be only called from privileged mode?  safe

… assume certain things about the hardware?
E.g. there is a VGA text bu�er at 0xb8000

57



Encapsulating Unsafety
Edge Cases: Functions that…

… disable paging?  unsafe

… disable CPU interrupts?  safe

… might cause CPU exceptions?  safe

… can be only called from privileged mode?  safe

… assume certain things about the hardware? depends

E.g. there is a VGA text bu�er at 0xb8000

57



Async / Await: Generators
Why is resume unsafe?

fn main() {

    let mut generator = move || {

        let foo = 42;

        let bar = &foo;

        yield;

        return bar

    };

    unsafe { generator.resume() };

    let heap_generator = Box::new(generator);

    unsafe { heap_generator.resume() };

}

enum Generator {

    Start,

    Yield1(i32, &i32),

    Done,

}

58



Async / Await: Generators
Why is resume unsafe?

fn main() {

    let mut generator = move || {

        let foo = 42;

        let bar = &foo;

        yield;

        return bar

    };

    unsafe { generator.resume() };

    let heap_generator = Box::new(generator);

    unsafe { heap_generator.resume() };

}

enum Generator {

    Start,

    Yield1(i32, &i32),

    Done,

}

Generator contains reference to itself
No longer valid when moved to the heap ⇒ unde�ned behavior
Must not be moved after �rst resume

58



Await: Just Syntactic Sugar?
Is await just syntactic sugar for the and_then combinator?

async fn handle_request(request: Request) -> Result<Response> {

    let user = await!(get_user_from_database(request.user_id))?;

    generate_response(user)

}

async fn handle_request(request: Request) -> Result<Response> {

    get_user_from_database(request.user_id).and_then(|user| {

        generate_response(user)

    })

}

In this case, both variants work.

59



Await: Not Just Syntactic Sugar!
fn read_info_buf(socket: &mut Socket) -> [u8; 1024]

    -> impl Future<Item = [0; 1024], Error = io::Error> + 'static

{

    let mut buf = [0; 1024];

    let mut cursor = 0;

    while cursor < 1024 {

        cursor += await!(socket.read(&mut buf[cursor..]))?;

    };

    buf

}

We don't know how many and_then we need
But each one is their own type -> boxed trait objects required

buf is a local stack variable, but the returned future is 'static
Not possible with and_then
Pinned types allow it for await

60


